穿孔板聲屏障吸聲結構是一種板厚度和孔徑都小的穿孔板結構,其孔徑一般不大于3mm。微穿孔板吸聲結構同樣屬于共振吸聲結構,其吸聲機理與穿孔板結構也基本相同。與普通穿孔板吸聲結構相比,其特點是吸聲頻帶寬、吸聲系數高,缺點是加工困難、成本高。微穿孔板吸聲結構也可以組合成雙層或多層結構使用,以進一步提高其吸聲性能。
由穿孔板聲屏障構成的共振吸聲結構被稱做穿孔板共振吸聲結構,它也是工程中常用的共振吸聲結構。對于多孔共振吸聲結構,實際上可以看成單孔共振吸聲結構的并聯結構,因此多孔共振吸聲結構的吸聲性能要比單孔共振吸聲結構的吸聲效果好,通過孔參數的優化設計,可以有效改善穿孔板聲屏障吸聲頻帶等性能。將硫鋁酸鍶鈣礦物引入到硅酸鹽熟料礦物體系中,合成了阿利特-硫鋁酸鍶鈣水泥,改善了硅酸鹽水泥的性能.利用X射線衍射、掃描電鏡-能譜儀和巖相等測試手段,研究了過量摻加SO3和SrO對阿利特-硫鋁酸鍶鈣水泥性能的影響.結果表明:熟料中SO3和SrO過摻量分別為50%和80%(質量分數),制得的阿利特-硫鋁酸鍶鈣水泥的1,3,28 d抗壓強度分別達到32.8,66.8,126.4 MPa,具有良好的力學性能.SO3和SrO的過量摻入促進了硫鋁酸鍶鈣礦物的形成,且有利于阿利特在低溫下的形成.
穿孔板聲屏障的共振頻率與穿孔板的穿孔率、空腔深度都有關系,與穿孔板孔的直徑和孔厚度也有關系。穿孔板的穿孔面積越大,吸聲頻率就越高;空腔或板的厚度越大,吸聲頻率就越低。為了改變穿孔板的吸聲特性,可以通過改變上述參數以滿足聲學設計上的需要。穿孔板主要用于吸收中、低頻率的噪聲,穿孔板的吸聲系數在0.6左右。多穿孔板的吸聲帶寬定義為,吸聲系數下降到共振時吸聲系數的一半的頻帶寬度為吸聲帶寬,穿孔板的吸聲帶寬較窄,只有幾十赫茲到幾百赫茲。
選擇了有代表性的5種長江口細砂進行級配、壓實特征、濕度特征、回彈模量的室內和現場試驗.結果表明:長江口細砂粒徑較為單一,多在0.075~0.300mm之間,不均勻系數小于5;采用小型試筒重型擊實試驗可減小擊實對周邊壓實砂粒的擾動,且干密度測試結果高于大型試筒;擊實曲線呈現多峰特征,含泥量越低,駝峰數越多,對現場施工壓實控制更為有利;低填細砂路基在運營過程中受地下水影響較小,CBR強度和回彈模量與壓實度、含泥量相關性顯著,能滿足設計要求,且經100萬次加載后無顯著衰減.
金屬吸聲尖劈隔音屏主要是在金屬板體的底面密布凹設諸多錐底具有一圓形微細孔的三角錐,然后在金屬板體的頂面設具成形為微細波浪型表面,且于波浪型表面上對應橢圓形微細孔處上方周圍亦凹設成形三角錐形。這不僅可增加了裝飾效果,而且因為增加了材料暴露在聲場中的面積,即增加了有效吸聲面積,并使聲波進入到材料深處,可提高尖劈隔音屏的吸聲性能。利用顯微硬度儀、掃描電鏡、能譜分析等微觀測試手段,采取對比方法研究了普通碎石混凝土和鋼渣粗骨料混凝土界面過渡區的結構和形態.結果表明:鋼渣表面粗糙多孔,水泥漿體能夠緊密包裹鋼渣;鋼渣-水泥石界面過渡區約為40μm,略小于普通碎石-水泥石界面過渡區(50μm),其界面過渡區結構較為致密,因而可形成較強的界面黏結力,配制的鋼渣粗骨料混凝土整體強度較高.
金屬吸聲體或吸聲尖劈隔音屏是一種的、自成體系的吸聲結構,它主要由多孔性吸聲材料加尖錐式結構構成,它不需要壁板結構一起形成共振空腔。其特點是吸聲性能好、便于安裝,要求是質量輕、便于施工等。金屬吸聲尖劈隔音屏常采用超細玻璃棉作為填充材料,采用金屬框或H型鋼結構等為支撐架,采用玻璃絲布作為外包裝防水材料,有時也采用穿孔率大于20%的穿孔板作為外包裝。采用爐底渣作輕砂,普通水泥和Ⅱ級粉煤灰作膠凝材料,膨潤土和復合外加劑作改性劑配制輕質保溫砂漿.研究了膨潤土摻量對爐底渣保溫砂漿的和易性、密度、抗壓強度和導熱系數的影響.結果表明:摻入一定量的膨潤土能明顯改善砂漿的和易性,提高砂漿的抗壓強度,而砂漿表觀密度和導熱系數變化不大.綜合考慮保溫砂漿的工作性、強度和導熱系數等方面因素,較為合適的膨潤土摻量為5.0%~7.5%(質量分數).
金屬吸聲體的吸聲性能與聲尖劈隔音屏的總長度以及空腔的深度、填充的吸聲材料的吸聲特性等都有關系,吸聲尖劈隔音屏越長,其低頻吸聲性能越好。