科電蓄電池KD6FM150透明報價
銷售電話:13716679560 QQ:1009314387 張經理
免維護鉛酸蓄電池的使用常識
蓄電池的安裝
蓄電池一般采用串聯方式使用,即一只蓄電池的正極與另一只蓄電池的負極相連,將所有蓄電池連在一起,最后余下正負接線端子與電動車對應...
免維護鉛酸蓄電池的使用常識
一、蓄電池的安裝
蓄電池一般采用串聯方式使用,即一只蓄電池的正極與另一只蓄電池的負極相連,將所有蓄電池連在一起,最后余下正負接線端子與電動車對應接線相連,電動車的電機、控制器、儀表等是蓄電池的用電負載。
電動車一般都有電池盒,從安裝位置分有斜杠式,后插式和底盤式安裝,其結構形狀可謂五花八門。每家電動車廠都各有特色。如圖電池盒一般用工程塑料制成,其強度較好,重量較輕,安裝方便。電池盒一般由底槽、上蓋、蓄電池接觸點及充電插座、電車鎖等組成。底槽與上蓋扣緊,并用自攻螺絲或螺栓緊固。電池盒是按蓄電池型號規格進行設計的,在整車設計時應考慮其良好的散熱性能。
二、蓄電池的充電
“蓄電池不是用壞的而是充壞的”,這一說法絕非危言聳聽,蓄電池充電性能好壞對蓄電池的使用壽命和使用性能起著舉足輕重的作用,必須重視。
1、蓄電池對充電工藝的要求
認識蓄電池對充電工藝的基本要求,是分析各種充電技術的基礎。蓄電池對充電的基本要求是:充電電流應小于或等于蓄電池可接收充電電流。否則,過剩的電流會使電解水液過快地消耗掉,產生以下危害:加大蓄電池的失水率,增加維護工作量,對于免維護電池,會造成蓄電池的早期失效;產生酸霧,造成環境污染,危害工人身體健康;使充電效率降低,造成能源的嚴重浪費。
充電過程,是放電電化學反應的逆反應過程,如果充電電化學反應過程在理想的狀態下進行,這個過程應該是互為逆反應,即充入的電量與放出的電量應基本相等。但在嚴重析氣的狀態下,有效充電電化學反應過程消耗的電能達不到總電量的40%,即浪費電能60%以上。
氣體的產生聚集在蓄電池多孔電極內部,減少了電解質與多孔電極的接觸面積,即充電電化學反應界面大幅度減小,使充電化學反應速度降低,充電十分困難,充電時間延長。
嚴重的析氣會損害蓄電池:
①大量氣體的產生對極板活性物有沖刷作用,使活性物質容易松軟和脫落。
②在較高的極化電壓下,正極板的板柵會產生嚴重腐蝕,生成pb02,這種腐蝕物與電化學生存的pb02是完全不同的,是一種不可逆的氧化物,導電較差,并使板柵變形,脆裂,失去骨架和導電作用。因此在充電時應盡可能防止過充電。
長期充電不足,未反應的活性物質會產生不可逆的高陽性的大顆粒pbs04晶粒(即不可逆硫酸鹽化)使蓄電池容量下降,內阻加大,充電難度加大,造成蓄電池早期損壞。因此,蓄電池要盡量保證充足電,防止不可逆硫酸鹽化。
2、充電頻次的選擇
蓄電池充電深度對循環壽命影響很大,基本呈指數變化。這是由于正極活性物為pb02,其結合牢度不高,放電時轉化成pbs04充電時又轉化成p,而p的體積遠比p體積大(其體積之比約為2:1)。因此,對正極板而言,活性物將會膨脹收縮反復進行,使其粒子之間的連接逐漸脫落,使蓄電池活性物失去放電特性成為“陽極泥”,使蓄電池性能下降,直至壽命終止。放電深度越深,膨脹收縮量越大,對活性物結合力破壞越大,壽命越短;反之則循環壽命越長。
從理論上講蓄電池使用時應盡量避免深放電,應做到淺放勤充,前提是有特別匹配的充電器與之匹配。但是實際使用中,由于蓄電池充電受充電器性能和蓄電池本身的離散及充電習慣及充電速度影響,充電器的電壓均比較高,或多或少都存在過充電。特別是充電多數在夜間進行,時間一般在6-10小時,平均8小時左右,若是淺放電,其充電很快就會到達末期,這時充電效率變低,會產生過充電。過充電時間比較長,加上頻繁充電,就會使蓄電池壽命因充電受到較大影響。
最理想的充電要求根據實際情況而定,要參考平時運行頻率、里程情況、蓄電池廠提供的說明,以及配套的充電器性能等參數制定充電頻次。按絕大多數用戶的情況,蓄電池以放電深度為50%-70%時充一次電最佳,這樣可使蓄電池壽命達到最佳效果。實際使用時可折算成騎行里程,在需要時充一次。
科電蓄電池KD6FM150透明報價
電池的正極板腐蝕
正極板的板柵中的鉛在充電過程中或被氧化為氧化鉛,并且不能夠再還原為鉛,形成正極板腐蝕。而氧化鉛的體積比鉛的體積大,形成體積線性增加變形,使正極板活性物質與板柵脫離,導致正極板失效。而過充電會嚴重加速正極板腐蝕。我們一般以為不會產生過充電狀態。實際上,基站的浮充電壓假如跟不上環境溫度的上升而進行下降的補償,過充電就產生了。如基站的空調不夠或者損壞,電池的過充電也會產生。這樣電池的正極板板柵在不同的使用條件下會有不同的腐蝕速度。長三角和珠三角地區的正極板腐蝕也會比內地嚴重,這與電池的使用環境溫度關系密切。
3、電池的負極板硫化
電池放電以后,負極板的鉛轉換為硫酸鉛,假如不及時充電或者充電時間比較長,這些硫酸鉛晶體就會逐步聚積而形成粗大的硫酸鉛結晶,采用普通的充電方式是無法恢復的所以稱為不可逆硫酸鉛鹽化,簡稱硫化。
在折合單格電壓為2.25V的浮充狀態下,電池基本布滿電需要一周的時間,完全布滿電需要28天的時間,其間電池就處于欠充電狀態。在電池放電以后的12小時,就可以發現產生粗大的硫酸鉛結晶。在發生電荒的地區,電池的硫化相當嚴重。
在一般浮充狀態下使用,隨著晝夜環境溫度的變化,硫酸鉛結晶也會聚積而形成粗大硫酸鉛結晶而導致硫化。
在冬季環境溫度比較低的時候,電池的浮充電壓應該相應的提升,假如浮充電設備沒有依據室溫相應的調解上升,電池欠充電就會產生,電池硫化也就產生了。
失水的電池相當于電解液的硫酸濃度上升,也形成了加速電池硫化的條件。
較快速的充電可以抑制電池的硫化,基站的充電電流相對都比較小,所以硫化程度比充電電流大的電池嚴重。另外,浮充電壓波動越小,浮充電流的擾動越小,也形成了電池硫化的條件。
采用低銻合金的正極板的電池,浮充電壓比較低,也比其它鉛鈣錫鋁合金電池更加輕易出現硫化。
從上面的硫化失效原因看看,很多電池是無法避免的。特別是電池組發生單體電池落后的時候,個別落后的單體電池處于欠充電狀態,這樣該電池比其它電池更加輕易硫化。
電池一旦出現硫化,靠單純的浮充和均充是無法解決的,必須采取其它措施。目前我公司的技術主要就是消除電池的硫化,使之恢復原有標稱容量,重新投進使用。
4、電池的失水
電池充電達到單體電池2.35V(25℃)以后,就會進進正極板大量析氧狀態,對于密封電池來說,負極板具備了氧復合能力。假如充電電流比較大,負極板的氧復合反應跟不上析氧的速度,氣體會頂開排氣閥而形成失水。假如充電電壓達到2.42V(25℃),電池的負極板會析氫,而氫氣不能夠類似氧循環那樣被正極板吸收,只能夠增加電池氣室的氣壓,最后會被排出氣室而形成失水。電池具備負的溫度特性,其析氣也與溫度特性一致。當電池溫升以后,電池的析氣電壓也會下降,溫升會導致電池輕易析氣失水。長三角和珠三角地區夏季環境溫度比較高,假如沒有空調或者空調容量不足,會使電池失水增加。假如單體電池的浮充電壓折合為2.25V,在30℃的時候,電池失水比25℃條件下增加一倍,在40℃條件下,電池失水是25℃的8倍左右,除非相應的降低浮充電壓。
假如電池的正極板含銻,隨著銻的循環,部分的轉移到負極板上面。由于氫離子在銻還原的超電勢約低200mV,于是負極板銻的積累會導致電池的充電電壓降低,充電的大部分電流用來做水分解而形成失水。所以,在大型固定型電池中應該逐步淘汰低銻正極板的電池。另外,對在電池生產過程中,應該嚴格控制鉛鈣錫鋁正極板的含量。
5、電池的熱失控
電池在均充狀態時,充電電壓會達到折合單格2.4V,這個電壓超過了電池正極板大量析氧的電壓,特別是在高溫環境中,大量析氧電壓會下降,這樣產生的析氧量會大幅度的增加。而正極板產生的氧氣在負極板會被吸收,吸收氧氣是明顯的放熱反應,電池的溫度會提升。假如電池已經出現失水,玻璃纖維隔板的無酸孔隙增加,會加速負極板吸收氧氣,產生的熱量會更多,電池溫升也更高。而電池的溫升也會加速正極板析氧,形成惡性循環——熱失控。在熱失控狀態下,析氧量增加,電池內的氣壓增加,當達到塑料電池外殼的玻璃點溫度的時候,電池開始鼓脹變型,這種變型除了影響電池內部的機械結構以外,還會形成電池漏氣,而導致更加嚴重的失水漏酸。
盡管電池熱失控現象發生的未幾,但是一旦發生熱失控,電池的壽命會迅速提前結束。
科電電池的失效模式及其原因
1、電池的正極板軟化
電池的正極板是由板柵和活性物質組成的,其中活性物質的有效成分就是氧化鉛。放電的時候氧化鉛轉為硫酸鉛,充電的時候硫酸鉛轉為氧化鉛。氧化鉛是由α氧化鉛和β氧化鉛組成的,在2種氧化鉛中以其中α氧化鉛荷電能力小但是體積大,比β氧化鉛堅硬,主要起支撐作用;β氧化鉛恰好相反,荷電能力大但是體積小,比α氧化鉛軟,主要起荷電作用。α氧化鉛是在堿性環境中天生的,在電池內部一旦出現參與放電以后,充電只能夠生產β氧化鉛。正極板的活性物質是多孔結構的,就與電解液——硫酸的接觸面積來說,多孔結構是平面的數十倍。假如α氧化鉛參與放電以后,重新充電以后只能夠天生β氧化鉛,這樣就失往了支撐,不僅僅會產生正極板活性物質脫落,而且脫落的活性物質還會堵塞正極板的微孔,導致正極板參與反應的真實面積下降,形成電池容量的下降。后備電源的電池使用年限要求比較嚴格,對電池的容量要求比較寬,因此后備電源使用的電池α氧化鉛和β氧化鉛比例比深循環的動力型電池大一些。為了減少α氧化鉛參與放電,一般控制放電深度僅僅為40%。隨著電池的使用時間的增加,電池的容量下降,新電池放電40%的電量,對于舊電池來說必然超過40%的,所以舊電池就相當于放電深度深,電池的正極板軟化也會被加速。所以,電池的容量壽命曲線的后期下降速率遠遠高于中期。電池容量越小,放電深度越深,α氧化鉛損失也越多,正極板軟化也越嚴重,導致電池容量下降越快,形成了惡性循環。
這樣,電池的放電深度需要嚴格控制。實現這個控制的是靠基站的電源治理系統的設置。目前控制電池放電深度的主要標準還是一次放電量和放電電壓。這樣,盡可能避免在應急的時候強制放電,而應該按照放電量來增加電池的容量。
科電蓄電池KD6FM120透明報價
光伏系統用儲能VRLA蓄電池的設計實踐
根據光伏系統用蓄電池的工作條件以及對光伏系統用蓄電池性能的特殊要求,結合上述影響蓄電池壽命的因素,在原VRLA蓄電池的基礎上進行了一系列的研究和技術改進,設計開發了光伏系統專用VRLA蓄電池。具體改進措施包含以下幾方面:
(1)板柵合金:采用了適合與循環使用鉛銻或者鉛鎘板柵合金,既能防止極板在使用過程中腐蝕增長,又可消除板柵和活性物質的界面上的阻擋層,杜盡了早期容量衰減。其充電效率和深放電后的恢復性能都很理想。由于鎘為有毒元素,現在限制使用。但由于鉛銻合金電池,失水嚴重,現在一般做成開口式蓄電池需要定期補水,需要職員定期維護。
(2)板柵結構:采用了特殊的板柵結構,可防止因板柵增長而導致蓄電池損壞,并增加了板柵的厚度,以延長蓄電池的使用壽命。現在常用管式正極板柵設計,有限解決了因活性與板柵之間接觸不好的題目。
(3)鉛膏:在正、負鉛膏中,添加能增加導電性的添加劑,如石墨、乙炔黑等,并改進和膏工藝和固化工藝,進步了蓄電池的充電接受能力、過放電后容量恢復能力和深循環壽命。
(4)裝配壓力:進步了電池的裝配壓力,以進步蓄電池的循環使用壽命。采用了高強度緊裝配技術,確保蓄電池緊裝配壓力得以實現。
(5)電解液:降低了硫酸電解液的比重,并添加了特殊的電液添加劑,可以降低對極板的腐蝕,減少電液分層的產生,進步了電池的充電接受能力,和過放電性能。
(6)雜質的控制:對各種材料的雜質(如Sb、Fe、Ni等)進行嚴格的控制,特別是合金中雜質的控制,降低了電池的自放電,杜盡了負極總線腐蝕現象的發生。
(7)正負活性物質的配比:針對光伏系統用儲能VRLA蓄電池的充放電特點,調整了正負活性物質的配比,進步蓄電池的循環壽命。
(8)安全閥:對安全閥還考慮了海拔2500m以上的高原天氣的影響,特別調整了開閉閥壓力,采用專用安全閥。
(9) 電池結構:降低了電池總高度。采用用矮型結構生產,可以大大降低由于電液分層現象導致蓄電池的使用壽命和容量受到不利影響。但由于膠體電池不易出現電解液分層現場,無此限制。
(10)蓄電池各單體電池的一致性:這里提到的一致性不僅是指電池的開路電壓,初期容量,還包括電池的內阻,自放電,以及充電效率等,這就要求足夠的制造精度,即從鉛粉、鑄片、和膏、涂片、固化、化成、干燥裝配、加酸、充電到最后的四項功能檢測都必須控制在較小的公差范圍內,所以采用機鑄、機涂、組立機裝配以及精確注酸是確保電池一致性的可靠保證,盡量減少人為因子。
科電蓄電池KD6FM38透明報價
鉛酸蓄電池行業現狀及發展趨勢
電池工業是新能源領域的重要組成部分,是全球經濟發展的一個新熱點,與電力、交通、信息等產業發展息息相關,是社會生產經營活動和人類生活中不可缺少的產品。
鉛酸蓄電池憑借其性能價比高、大容量、高功率、長壽命、安全可靠等優點,是目前世界上產量最大、用途最廣的一種電池,鉛酸蓄電池銷售額占全球電池銷售額的30%以上。鉛作為鉛酸蓄電池最為重要的原料,其質量和價格的高低直接影響蓄電池產業未來的發展,鉛和鉛酸蓄電池的發展是相輔相成的。現就對近年來我國鉛酸蓄電池發展現狀進行分析,談點自己的感想。
以上說明了我國鉛酸蓄電池行業現狀,鉛酸蓄電池產業發展前景,最后指出了我國蓄電池產業面臨的問題。
科電蓄電池應用范圍:
⑴ 電話交換機 ⑺ 辦公自動化系統
⑵ 電器設備、醫療設備及儀器儀表 ⑻ 無線電通訊系統
⑶ 計算機不間斷電源 ⑼ 應急照明
⑷ 輸變電站、開關控制和事故照明 ⑽ 便攜式電器及采礦系統
⑸ 消防、安全及報警監測 ⑾ 交通及航標信號燈
科電蓄電池講述:廢鋰電池的處理方法
廢棄的鋰電池中含有大量不可再生且經濟價值高的金屬資源,如鈷、鋰、鎳、銅、鋁等,如果能有效地回收處理廢棄或不合格的鋰電池,不僅能減輕廢銼電池對環境的壓力,還可以避免造成鈷、鎳等金屬資源的浪費。
常州今創博凡能源新材料有限公司與高校合作,建立了以江蘇技術師范學院、江蘇省貴金屬深加工技術及其應用重點實驗室為技術支撐的課題組,立項研究從廢鋰離子電池中回收有價金屬,經過3年研發,解決了生產中操作復雜、流程長、有機溶劑對環境造成危害等不利因素,縮短了工藝流程,降低了耗電量,提高了金屬回收率、純度和回收量,形成“每年8000噸廢鋰電池金屬全封閉清潔回收工藝及其應用”成果。
項目屬于固體廢棄物資源化利用應用領域,技術原理是采用濕法冶金技術進行有色金屬的分離和回收,包括浸出、溶液凈化與富集、溶劑萃取等,另外還采用電冶金技術即電積終獲得單質金屬產品。
技術路線是:首先對廢鋰電池進行預處理,包括放電、拆解、粉碎、分選;拆解后的塑料及鐵外殼回收;分選后的電極材料進行堿浸出、酸浸出、除雜后,進行萃取。
萃取是關鍵一步,將銅與鈷、鎳分離;銅進入電積槽進行電積產生電積銅產品;經萃取后的鈷、鎳溶液再進行萃取分離,這時經過結晶濃縮,直接得到鈷鹽和鎳鹽;或者經萃取分離的鈷、鎳分別進入電積槽中,得到電積鉆和電積鎳產品。
電沉積工序的鉆、銅、鎳回收率達99%,品級分別達到99.98%、99.95%和99.2%~99.9%,硫酸鈷、硫酸鎳產品等都達到相關標準。
本項目在優化的研究成果前提下,進行規模化、產業化的研發和建設,建成一條年回收量達8000噸的廢鋰離子全封閉清潔生產線,回收得到鈷1500噸、銅1200噸和鎳420噸,總產值超過4億元。
將濕法回收重金屬技術進行規模化應用,經了解在國內還未見,在國外也不多見。
這項成果對全國廢鋰電池金屬資源回收具有一定的指導作用,成功地填補了國內空白;清潔環保,成本低,利潤高,在同類企業中具有較大的競爭優勢。
采用濕法回收工藝,整合、簡化工藝流程,整套工藝能耗低,產品回收率高。